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imperfect surfaces: Bounds on the surface critical exponent β1
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Abstract. The critical behaviour of three-dimensional semi-infinite Ising ferromagnets at planar surfaces
with (i) random surface-bond disorder or (ii) a terrace of monatomic height and macroscopic size is consid-
ered. The Griffiths-Kelly-Sherman correlation inequalities are shown to impose constraints on the order-
parameter density at the surface, which yield upper and lower bounds for the surface critical exponent
β1. If the surface bonds do not exceed the threshold for supercritical enhancement of the pure system,
these bounds force β1 to take the value βord

1 of the latter system’s ordinary transition. This explains the
robustness of βord

1 to such surface imperfections observed in recent Monte Carlo simulations.

PACS. 68.35.Rh Phase transitions and critical phenomena – 75.10.Hk Classical spin models – 78.30.Ly
Disordered solids

In a recent paper Pleimling and Selke (PS) [1] reported
the results of a detailed Monte Carlo analysis of the effects
of two types of surface imperfections on the surface critical
behaviour of d = 3 dimensional semi-infinite Ising models
with planar surfaces and ferromagnetic nearest-neighbour
(NN) interactions: (i) random surface-bond disorder and
(ii) a terrace of monatomic height and macroscopic size
on the surface. For type (i), both the ordinary and special
transitions were studied. They found that the asymptotic
temperature dependence of the disorder-averaged surface
magnetization on approaching the bulk critical tempera-
ture Tc from below could be represented by a power law
∼ |τ |β1 with τ ≡ (T −Tc)/Tc, where β1 agreed, within the
available numerical accuracy, with the respective values
βord

1 ' 0.8 and βsp
1 ' 0.2 of the pure system’s ordinary

and special transitions. For type (ii), where the interaction
constants were chosen such that only an ordinary transi-
tion could occur, the same value βord

1 of the perfect system
was found for β1.

Their findings for the case of (i) are in conformity with
the relevance/irrelevance criteria of Diehl and Nüsser [2,
3] according to which the pure system’s surface critical
behaviour should be expected to be stable or unstable
with respect to short-range correlated random surface-
bond disorder depending on whether the surface specific
heat C11 [4] of the pure system remains finite or diverges
at the transition. It is fairly well established [5,6] that
C11 approaches a finite constant at the ordinary transi-
tion, but has a leading thermal singularity ∼ |τ |(d−1)ν−2Φ

at the special transition, where Φ is the surface crossover

exponent. In the latter case, the condition for irrelevance,
Φ < (d− 1)ν/2, reduces to

Φ < ν (1)

in d = 3 bulk dimensions. Since various Monte Carlo simu-
lations [7–9] (though not all [10]) and renewed field-theory
estimates [11] suggest a value of Φ between 0.5 and 0.6,
definitely smaller than the accepted value 0.63 of ν for
d = 3, one may be quite confident that the condition (1)
holds. Thus short-range correlated surface-bond disorder
should be irrelevant in the renormalization-group sense at
both transitions.

Irrelevance criteria of the above Harris type [2,3] seem
to work quite well in practice. Yet, from a mathematical
point of view, they are rather weak because they are noth-
ing but a necessary (though not sufficient) condition for
stability of the pure system’s critical behaviour.

In this note, I shall employ the Griffiths-Kelly-Sherman
(GKS) inequalities [12] to obtain upper and lower bounds
on the surface magnetization densities of both types of
imperfect systems, bounds that are given by surface mag-
netizations of analogous systems without such imperfec-
tions. Their known asymptotic temperature dependence
near Tc will then be exploited to obtain restrictions on the
surface critical behaviour of the imperfect systems con-
sidered. For some cases of interest studied by PS [1], the
equality β1 = βord

1 will be rigorously established.
Following these authors, let us consider an Ising model

with ferromagnetic NN interactions on a simple cubic lat-
tice of size Lx × Ly × Lz. Periodic boundary conditions
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will be chosen along two principal axes (the x and y direc-
tions), and free boundary conditions along the third one
(the z direction), so that the surface consists of the top
layer at z = 1 and the bottom layer at z = Lz. Associated
with each pair of spins on NN sites i and j is an inter-
action constant J(i, j) > 0, which we assume to have the
same value J whenever i or j (or both) belong to layers
with 1 < z < Lz.

In the case of surface-bond disorder, which we con-
sider first, the J(i, j) ≡ J(s)(i, j) of all NN pairs of surface
sites are independent random variables. The probability
density P (J1) of any one of these will be assumed to have
support only in the interval [J<1 , J

>
1 ] (with J>1 > J<1 > 0).

This is in conformity with, but less restrictive than, PS’s
assumption that J1 takes just two values J<1 and J>1 , ei-
ther one with probability 1/2. We will also assume that all
(bulk and surface) spins are exposed to the same magnetic
field H > 0, whose limit H → 0+ will be taken after the
thermodynamic limit has been performed.

Let K ≡ J/kBT and h ≡ H/J . Define r(s) to be the set
of all dimensionless surface coupling constants J (s)(i, j)/J .
Let m(i;K, r(s), h) ≡ 〈si〉 be the thermal average of a
spin at site i for a given disorder configuration r(s), and
denote the corresponding quantity of the perfect system
with uniform NN surface coupling J1 = rJ asm(i;K, r, h).
Since all interactions are ferromagnetic, the GKS inequal-
ities [12] are valid. Averages of products of spin vari-
ables are monotone non-decreasing functions of all vari-
ables J(i, j) and H. Hence, for finite Lx, Ly, and Lz,

m(i;K, r(s), h) is bounded by m(i;K, r<, h) from below
and by m(i;K, r>, h) from above. We choose i ≡ is to be a
surface site, take the thermodynamic limit (first) and then
let H → 0+. The bounds converge towards the respective
values of m1(K, r, 0+), the spontaneous magnetization of
the surface layers per site, for r = r< and r>. Thus we
obtain

m1(K, r<, 0+) ≤ m(is;K, r
(s), 0+) ≤ m1(K, r>, 0+). (2)

The following limiting forms of m1 are well established [1,
4,7,13,14]:

m1 =


C1|τ |β

ord
1 [1 + o(τ)] as τ → 0− at fixed r < rc,

C′1|τ |
βsp

1 [1 + o(τ)] as τ → 0− at fixed r = rc,

m1c +O(τ) as τ → 0± at fixed r > rc,

(3)

where rc ' 1.50 [7] is the critical value associated with the
special transition. The quantities m1c > 0, C1, and C′1 are
nonuniversal, whence the first two depend on r.

Consider first the case r> < rc. Let C< and C> be the
values of C1 for r = r< and r = r>, respectively. (These
satisfy 0 < C< ≤ C> < ∞ provided 0 < J < ∞ and
0 < J<1 ≤ J

>
1 <∞.) It follows that there exists a number

ε > 0 independent of the disorder configuration r(s) such
that

C> ≤ m[is;K(τ), r(s), 0+] |τ |−β
ord
1 ≤ C> (4)

whenever−ε < τ < 0. We denote the average of a quantity
Q over all choices of the random variables r(s) as Q. Upon
averaging m(is; .) to obtain the disorder-averaged surface
magnetization m1, we see that the inequality (4) holds for

m1 |τ |−β
ord
1 as well. An elementary consequence is: If m1

has a well-defined critical exponent βdis
1 in the sense that

[15]

βdis
1 = lim

τ→0−

lnm1(τ)

ln τ
(5)

exists, then we have

βdis
1 = βord

1 . (6)

Two further implications of (4) are worth mentioning.

First, if a surface critical exponent β̃dis
1 can be defined via

the analog of (5) for the most probable value of m(is; .)
[16], then it must have the same value βord

1 . Second, the in-
equality (4) also rules out a limiting τ dependence of the
form ∼ |τ |β1 | ln |τ ||ϕ (standard logarithmic corrections)
for m1 and the most probable value of m(is; .).

Consider next the case r> = rc. Let us again make
the assumption that the limit (5) or the analogous one

defining β̃dis
1 exist. Then the inequalities

βsp
1 ≤ β

dis
1 ≤ βord

1 (7)

and their analogs for β̃dis
1 can be deduced from (4) (cf.

Lemma 3 of [15].)
The same reasoning applied in the case r> > rc shows

that βdis
1 or β̃dis

1 must obey the relations

0 ≤ βdis
1 ≤ βord

1 (8)

whenever the limits (5) through which we defined them
exist.

Likewise in the case r< = rc, the possible values of
βdis

1 or β̃dis
1 are restricted by

0 ≤ βdis
1 ≤ βsp

1 (9)

at transitions at which m1 or the most probable value
of m(is; .) [16] approach zero, respectively. On the other
hand, it should be recalled that the surface critical ex-
ponent βex

1 of the pure system’s extraordinary transition
requires a definition other than (5): One must subtract a
regular background contribution mreg

1 from m1 and define
βex

1 through the limiting behaviourm1−m
reg
1 ∼ |τ |β

ex
1 . For

transitions of the impure systems at which m1 approaches
a constant 6= 0, it would also not make much sense to de-
fine βdis

1 via (5). Of course, for surface critical exponents
βdis

1 not given by (5), the above bounds do not apply.
This means that they cannot be utilized to draw conclu-
sions about the surface critical exponent βex

1 of the impure
system’s extraordinary transition. However, for a special
transition of the impure system with m1(τ = 0) = 0, the
inequalities (9) hold.

The inequality (2) rules out that the impure system has
an ordered surface phase for T > Tc whenever r> ≤ rc.
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In order that the impure system can have an extraordi-
nary or special transition, the distribution P (J1) of the
surface couplings typically will have to extend beyond
the critical-enhancement threshold rcJ of the pure sys-
tem. But even if r> > rc, an ordinary transition may still
occur if the surface bonds ‘on average’ are not sufficiently
enhanced (cf. [1]). However, if the support of P (J1) ex-
tends beyond rcJ , then disorder configurations for which
macroscopically large surface regions have the same su-
percritical value (> rcJ) of J1 occur with finite probabil-
ity. This happens even if the impure system (for a typical
realization of disorder) undergoes an ordinary transition,
albeit with exponentially small probability. By analogy
with the bulk case [17], I expect surface quantities like
m1 and the disorder-averaged surface free energy to be
non-analytic functions of the surface magnetic field H1 at
H1 = 0 for temperatures between the bulk critical tem-
perature Tc and the temperature Ts(r

>) > Tc at which
the semi-infinite pure system with homogeneous surface
coupling J1 = r>J undergoes a transition to a surface-
ordered, bulk-disordered phase. That is, they should dis-
play Griffiths singularities [17], a problem on which we
will not embark further here.

Turning now to the case of surfaces with a terrace, we
start from a pure Ising model of the sort considered above.
Just as PS, we assume that all NN couplings J(i, j) (in-
cluding those between surface sites) have the same value
J . Let us denote thermal averages pertaining to this sys-
tem by a superscript [I], writing, e.g., m[I](i;K) = 〈si〉[I].
We consider another system, [II], which differs from [I]
through the addition of a zeroth layer at z = 0 whose spins
are assumed to interact among themselves and with the
spins in the z = 1 layer via NN interaction constants J1

and J , respectively. To obtain a system with a terrace, [T ],
we choose a subregion of the zeroth layer (the terrace) and
remove all those NN bonds J and J1 that are connected
to lattice sites of this layer outside the terrace region. PS
considered a strip-like terrace of size (Lx/2)×Ly, and as-
sumed that J1 = J . For our considerations, the precise
form and size of the terrace region will not be important.
(One could even assume that an arbitrary subset of the
spins in the zeroth layer are decoupled from the rest of
the system.)

Let i1 be an arbitrary lattice site in the z = 1 layer.
Since the systems [I], [T], and [II] differ by the addition
of ferromagnetic interactions, we have from the GKS in-
equalities,

m[I](i1;K,h) ≤ m[T](i1;K, r, h) ≤ m[II](i1;K, r, h) (10)

where, as before, h = H/J > 0 is a uniform magnetic field
and r = J1/J . In the thermodynamic limit Lx, Ly, Lz →
∞, the lower and upper bounds converge towards
m1(K,h), the magnetization per site of the topmost layer,
and to m2(K, r, h), the magnetization per site of the layer
underneath the topmost layer, respectively. If we assume
that r < rc (subcritical surface enhancement) and take the
limit h → 0+, then the limiting form shown in the first
line of (3) applies to both m1 and m2 (with different val-
ues of C1). As a straightforward consequence we find that

the surface critical exponent β1 of m[T](i1;K, r, 0+) (for
an arbitrary site i1 with z = 0) strictly satisfies β1 = βord

1 .
It is evident that the same reasoning can be applied

to the analogous two-dimensional model with a terrace to
conclude that β1 takes the exactly known value βord

1 =
1/2. Likewise, the inequality (4) and the result (6) carry
over to the two-dimensional case, giving βdis

1 = 1/2 for
all values of r < ∞, since rc = ∞ for d = 2. Note
also that the inequality (4) excludes the possibility of an
asymptotic temperature dependence of the form m1 ≈
const |τ |1/2| ln |τ ||p (i.e., of logarithmic correction factors).
This is because it is known for the pure case that no such
logarithmic corrections appear in the limiting form of m1.

Results of Monte Carlo simulations on the surface crit-
ical behaviour of two-dimensional Ising models with bond
disorder have been reported in two recent papers [18].
However, in this work random bond disorder was assumed
to be present both in the bulk and at the surface, a case
not captured by our reasoning. Nevertheless,m1 was found
to behave as |τ |1/2, apparently without logarithmic correc-
tions, even though the presence of such a correction could
be detected in the limiting form of the disorder-averaged
bulk order parameter.

I am indebted to W. Selke for informing me about the work [1]
prior to publication, and to him, Joachim Krug, and Kay Wiese
for a critical reading of the manuscript. This work has been
supported by the Deutsche Forschungsgemeinschaft through
the Leibniz program.
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